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PROBLEM

“Globally, at least 2.2 billion people have a near or distance vision impairment. 
In at least 1 billion – or almost half – of these cases, vision impairment could 
have been prevented or has yet to be addressed. ”

Causes of the Problem

• Limited accessibility to medical care

• Diagnosing Ocular Diseases is a time-consuming process



OBJECTIVES

1. To develop an AI image classifier to detect presence of different types of 
ocular diseases using fundus images with an accuracy of over 85%.

2. To experiment with different and combined convolutional neural network 
(CNN) architectures to achieve the best accuracy.

3. To develop a user-friendly web app that implements the AI model, which can 
be used by the public and medical professionals.



DEVELOPING 
THE IMAGE 
CLASSIFIER

Steps:

1. Data analysis and data processing

2. Training the model 

3. Evaluating the accuracy of the model

4. Optimize Hyperparameters 

5. Repeat

• Trained The Model Using PyTorch

• Used Transfer learning for existing pre-trained 
Models: ResNet50, VGG16 and VIT



DIFFICULTIES OF CLASSIFYING MULTIPLE DISEASES

• Encountered difficulties classifying 
multiple diseases

• Diabetic Retinopathy and Glaucoma had 
bad accuracy

• Decided to reduce the number of classes 
to Normal, Cataract and Myopia 



• The imbalance of data in 
each class caused a lot of 
bias 

• Built an image augmenter 
function to augment images 
in each minority class. 

• The augmenter creates new 
images by randomly 
flipping, rotating and 
adding blur to existing 
images.

SKEWED 
DATASET Number of images per class in training dataset



• The hyperparameters: learning rate, epochs and batch size were defined

• The cross-entropy loss function and Adam loss optimizer was defined 

• During the training loop:
 Input data and labels were moved to the GPU for acceleration

 Reset the gradients of the optimizer

 Forward pass: Feed the inputs to the model 

 Compute the loss

 Backward pass: Compute gradients with respect to the loss 

 Update the model parameters using the optimizer 

TRANSFER LEARNING ALGORITHM



• Training loop validation:
 Move the input data and labels to the GPU.

 Perform a forward pass to obtain the predicted outputs.

 Compute the validation loss.

 Compute a confusion matrix to evaluate the per-class accuracies.

 Accumulate the validation loss and compute the average class accuracy.

• The model with the highest average class accuracy was saved

TRANSFER LEARNING ALGORITHM



MODEL EVALUATION

• Load the saved model

• Loops through all the images and 
predict the diagnosis of all the fundus 
images in the testing dataset.

• Generated a confusion matrix to display 
all the class accuracies

Confusion Matrix of ViT model



OPTIMISING THE HYPERPARMETERS

• The aim was to optimize batch size, epochs and learning rate 

• Attempted to use a grid search to loop through a range of hyperparameter 
combinations and evaluate the accuracy of the model.

• This method was time consuming and was ineffective for finding the optimal 
values of epochs and learning rate.

• However, I figured out the optimal batch size for my GPU was 128 because 
any thing over that would overload the GPU and use a lot more memory 
swap.



OPTIMISING THE HYPERPARMETERS

• The next attempt was to use a library called 
LR_Finder

• Plots the loss against the learning rate and finds 
points where the gradient is steepest to give the 
optimal learning rate.

• The learning rate given by the library was not 
always optimal.

• Used it as a starting point and used an 
incremental trial and error approach to optimize 
the learning rate



OPTIMISING THE 
HYPERPARMETERS

• Kept the epochs fixed and only adjusted 
the learning rate

• Realized that epochs is a tradeoff between 
training time and window to diverge at the 
optimal solution

• Kept reducing the learning rate 
incrementally using a trial-and-error 
approach until the loss converged.

LR=2E-4

LR=5E-4



RESULTS
Model Average Class 

Accuracy (%)
VGG16 86.39

ResNet50 88.09
VIT 91.45

VIT ResNet50 VGG16



DEVELOPING THE WEB APP

• Used Figma for the web design

• Used React.js and MaterialUI for the Client Side

• Used Flask to build the API and run the image 
classifier on the Server Side

• Collected all the inputted images in Firebase 
Storage for future improvements of the model.

Figma Design



DEMONSTRATION






CONCLUSION

• Achieved a 91.5% accuracy

• Tested out and compared the different CNN models and vision transformer.

• Successfully built a web application to run the models

• However, its limitation of only being able to classify between 3 classes makes 
it not useful enough yet to be implemented in the medical field 

• Further improvements are needed to make it a viable product



FUTURE WORK

• Potential for semi-supervised learning using collected data

• Gather a much larger dataset of fundus images

• Explore Bayesian Optimization and Hyperparameter Importance Analysis for 
hyperparameter tuning

• Explore increasing the dataset size using stable diffusion
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