
DEVELOPMENT OF AI-BASED 
ALGORITHM FOR RETINAL 
DISEASE SCREENING
DASWANI, SAHIL BHARAT



PROBLEM

“Globally, at least 2.2 billion people have a near or distance vision impairment. 
In at least 1 billion – or almost half – of these cases, vision impairment could 
have been prevented or has yet to be addressed. ”

Causes of the Problem

• Limited accessibility to medical care

• Diagnosing Ocular Diseases is a time-consuming process



OBJECTIVES

1. To develop an AI image classifier to detect presence of different types of 
ocular diseases using fundus images with an accuracy of over 85%.

2. To experiment with different and combined convolutional neural network 
(CNN) architectures to achieve the best accuracy.

3. To develop a user-friendly web app that implements the AI model, which can 
be used by the public and medical professionals.



DEVELOPING 
THE IMAGE 
CLASSIFIER

Steps:

1. Data analysis and data processing

2. Training the model 

3. Evaluating the accuracy of the model

4. Optimize Hyperparameters 

5. Repeat

• Trained The Model Using PyTorch

• Used Transfer learning for existing pre-trained 
Models: ResNet50, VGG16 and VIT



DIFFICULTIES OF CLASSIFYING MULTIPLE DISEASES

• Encountered difficulties classifying 
multiple diseases

• Diabetic Retinopathy and Glaucoma had 
bad accuracy

• Decided to reduce the number of classes 
to Normal, Cataract and Myopia 



• The imbalance of data in 
each class caused a lot of 
bias 

• Built an image augmenter 
function to augment images 
in each minority class. 

• The augmenter creates new 
images by randomly 
flipping, rotating and 
adding blur to existing 
images.

SKEWED 
DATASET Number of images per class in training dataset



• The hyperparameters: learning rate, epochs and batch size were defined

• The cross-entropy loss function and Adam loss optimizer was defined 

• During the training loop:
 Input data and labels were moved to the GPU for acceleration

 Reset the gradients of the optimizer

 Forward pass: Feed the inputs to the model 

 Compute the loss

 Backward pass: Compute gradients with respect to the loss 

 Update the model parameters using the optimizer 

TRANSFER LEARNING ALGORITHM



• Training loop validation:
 Move the input data and labels to the GPU.

 Perform a forward pass to obtain the predicted outputs.

 Compute the validation loss.

 Compute a confusion matrix to evaluate the per-class accuracies.

 Accumulate the validation loss and compute the average class accuracy.

• The model with the highest average class accuracy was saved

TRANSFER LEARNING ALGORITHM



MODEL EVALUATION

• Load the saved model

• Loops through all the images and 
predict the diagnosis of all the fundus 
images in the testing dataset.

• Generated a confusion matrix to display 
all the class accuracies

Confusion Matrix of ViT model



OPTIMISING THE HYPERPARMETERS

• The aim was to optimize batch size, epochs and learning rate 

• Attempted to use a grid search to loop through a range of hyperparameter 
combinations and evaluate the accuracy of the model.

• This method was time consuming and was ineffective for finding the optimal 
values of epochs and learning rate.

• However, I figured out the optimal batch size for my GPU was 128 because 
any thing over that would overload the GPU and use a lot more memory 
swap.



OPTIMISING THE HYPERPARMETERS

• The next attempt was to use a library called 
LR_Finder

• Plots the loss against the learning rate and finds 
points where the gradient is steepest to give the 
optimal learning rate.

• The learning rate given by the library was not 
always optimal.

• Used it as a starting point and used an 
incremental trial and error approach to optimize 
the learning rate



OPTIMISING THE 
HYPERPARMETERS

• Kept the epochs fixed and only adjusted 
the learning rate

• Realized that epochs is a tradeoff between 
training time and window to diverge at the 
optimal solution

• Kept reducing the learning rate 
incrementally using a trial-and-error 
approach until the loss converged.

LR=2E-4

LR=5E-4



RESULTS
Model Average Class 

Accuracy (%)
VGG16 86.39

ResNet50 88.09
VIT 91.45

VIT ResNet50 VGG16



DEVELOPING THE WEB APP

• Used Figma for the web design

• Used React.js and MaterialUI for the Client Side

• Used Flask to build the API and run the image 
classifier on the Server Side

• Collected all the inputted images in Firebase 
Storage for future improvements of the model.

Figma Design



DEMONSTRATION






CONCLUSION

• Achieved a 91.5% accuracy

• Tested out and compared the different CNN models and vision transformer.

• Successfully built a web application to run the models

• However, its limitation of only being able to classify between 3 classes makes 
it not useful enough yet to be implemented in the medical field 

• Further improvements are needed to make it a viable product



FUTURE WORK

• Potential for semi-supervised learning using collected data

• Gather a much larger dataset of fundus images

• Explore Bayesian Optimization and Hyperparameter Importance Analysis for 
hyperparameter tuning

• Explore increasing the dataset size using stable diffusion


	Development of AI-based algorithm for retinal disease screening
	problem
	Objectives
	Developing the Image classifier
	Difficulties of classifying multiple diseases
	Skewed Dataset
	transfer learning algorithm
	transfer learning algorithm
	Model Evaluation
	OPTIMISING THE HYPERPARMETERS
	OPTIMISING THE HYPERPARMETERS
	OPTIMISING THE HYPERPARMETERS
	Results
	Developing the Web APp
	Demonstration
	Conclusion
	Future work

